
*This work was supported by US Army-TARDEC under contract #W56HZV-09-C-0569 
  UNCLASSIFIED: Distribution Statement A. Approved for public release. 
 

EFFECT OF TEMPERATURE ON MECHANICAL PROPERTIES OF NANOCLAY 
REINFORCED POLYMERIC NANOCOMPOSITES – PART II: MODELING AND 

THEORETICAL PREDICTIONS* 

by  

S. Bayar, F. Delale and J. Li 

Mechanical Engineering Department 

 The City College of New York, New York, NY 10031 

 

ABSTRACT 

In this paper we present the modeling and theoretical prediction for the results given in Part I [1] 
for nanoclay reinforced polymers subjected to mechanical and thermal loads. In the previous 
paper (Part I) the mechanical properties for 3 grades of polypropylene (PP) and epoxy reinforced 
with nanoclay were experimentally determined at various temperatures. In this study using the 
Mori-Tanaka formulations ( for oriented particles, 2-D randomly distributed particles and 3-D 
randomly distributed particles) and the Finite Element Method (FEM) the Young’s modulus and 
Poisson’s ratio are calculated and then compared with the experimental results. The Mori-Tanaka 
formulation is modified to take into account nanoclay particles of varying dimensions and also 
the effect of voids. In addition at high temperatures, the formulation is further modified to 
include the effect of temperature in the calculation of the Young’s modulus. It is found that the 
results obtained from the modified Mori-Tanaka calculations compare well with the 
experimental results. The Finite Element calculations also provide a reasonable estimate for the 
Young’s modulus, but the results are less predictive than the Mori-Tanaka results. 

1-  INTRODUCTION 

In the previous paper (Part I), the experimental results obtained for nanoclay reinforced three 
grades of PP and epoxy at various temperatures were presented. Specifically, the variation of 
mechanical properties (such as Young’s modulus, Poisson’s ratio, ultimate stress, failure or end 
of test strain) with temperature and nanoclay reinforcement percentage was discussed in detail. 
In this paper (Part II) using a modified Mori-Tanaka formulation and the Finite Element Method, 
the Young’s modulus and the Poisson’s ratio are calculated and compared with their counterpart 
obtained experimentally.  

Compared to experimental studies, the number of publications dealing with theoretical prediction 
of properties in polymer/clay nanocomposites is relatively small. As reported in [2] some 
continuum-mechanics based theoretical models to predict the mechanical properties have been 
proposed [3-6]. Fornes [7] applied the Halpin-Tsai and Mori-Tanaka reinforcement theories to
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predict the modulus of nylon based nanocomposites. The modulus obtained using Mori-Tanaka 
calculation increased with nanoclay reinforcement as predicted. The Halpin-Tsai formula gave 
higher values for the modulus but still could be used to predict the value of the modulus. Sheng 
[2] preformed a more detailed study on theoretical analysis of nanocomposites. A 
micromechanical model was developed to account for the morphology of the nanocomposite, 
particle volume fraction, particle aspect ratio, mechanical properties of matrix, exfoliated clay 
layer thickness and layer spacing. For each case the Halpin-Tsai and Mori-Tanaka models were 
applied to calculate the variation of the normalized Young’s modulus of the nanocomposites 
with volume fraction, particle aspect ratio, layer thickness and layer spacing. In addition some 
calculated results were compared with tensile test data. Comparing the Halpin-Tsai and Mori-
Tanaka results it was observed that the Mori-Tanaka calculations matched the tensile test data 
better. 

Drozdov [8] studied the viscoelasticity and viscoplasticity of polypropylene/clay 
nanocomposites. New constitutive equations were developed taking into account the 
viscoelasticity and viscoplasticity of the nanocomposite and these equations were used in the 
analysis of the time-dependent response of long-term creep tests. Sheng also presented in [2] an 
Finite Element model to estimate the Young’s modulus of polymer/clay nanocomposites with the 
representative volume element constructed using TEM observations. The plane strain FEM 
simulation results for the normalized Young’s modulus of the nanocomposite were compared 
with those obtained from the Mori-Tanaka model and were in good agreement with the 
experimental data. In [9] the Young’s modulus is predicted using the Halpin-Tsai equations and 
compared with experimental results. The calculated results are much lower than those obtained 
experimentally. In this study, we introduce a modified Mori-Tanaka formulation to better match 
the experimental results. First, the calculation from three Mori-Tanaka formulations, namely for 
oriented particles, 2-D randomly distributed and 3-D randomly distributed particles are 
presented. The formulation is further refined to account for the effects of voids and temperature. 
Finally, Finite Element calculations based on the representative volume element concept (RVE) 
are performed. The comparison of calculated results with those obtained experimentally show 
that both the Mori-Tanaka formulations and the FEM may be used as effective tools to predict 
the Young’s modulus of nanoclay reinforced PP nanocomposites. 

2- THE MORI-TANAKA FORMULATIONS 

The purpose of micromechanics modeling of polymer/clay nanocomposites is to predict their 
elastic properties. For multi-scale modeling, intercalated and exfoliated clay systems were 
studied. A representative volume element consisting of N layers of intercalated or exfoliated clay 
platelets surrounded by polymer matrix was considered. 
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2.1 Application of Mori-Tanaka formulation for tensile testing 

To simulate and predict the elastic properties of two-phase nanoclay reinforced nanocomposites 
we propose to use the Mori-Tanaka model which is based on micromechanics and uses Eshelby’s 
solution for inclusions embedded in an infinite matrix. Here we approximate the nanoclay flakes 
as thin disks with the aspect ratio α calculated using their thickness and length. For analytical 
results, three different Mori-Tanaka approaches are used. These approaches depend on particle 
orientation. The three approaches are: “Oriented particles”, “2-D randomly distributed particles” 
and “3-D randomly distributed particles”.  

Electron microscopy studies of nanoclay reinforced polymers indicate that (see for example 
[2,12]) nanoclay particles may be of varying sizes and thicknesses depending on complete or 
partial exfoliation. Furthermore, they may be randomly distributed with some particles which are 
oriented. Accordingly, the current nanoclay particle models assume a multi-layer thickness 
instead of totally exfoliated single flakes. In calculating the particle parameters, here we adopt 
the model developed by Sheng, et al. [2] which is shown in Figure 1. A similar model is given in 
[5]. 

 
Figure 1. Model of nanoclay particle [2] 

 

In the model it is assumed that the nanoclay particle consists of N flakes of thickness ds 
separated by a distance d0-ds, where d0

𝑡𝑡 = (𝑁𝑁 − 1)𝑑𝑑0 + 𝑑𝑑𝑠𝑠 

 is the inter-layer spacing. The thickness of the particle 
can then be calculated as:  

(1) 
 

In determining the particle thickness for organo-nanoclay we assume an inter-layer spacing for 
d0=2.4nm [13] and a flake thickness ds=0.615nm [2, 14]. Since the size of the particle may vary, 
here we assume an average diameter of D=200nm. 
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In the Mori-Tanaka formulas the elastic properties are expressed in terms of the particle volume 
fraction c. Thus, the reinforcement percentages per weight Wp

𝑐𝑐 =
𝑊𝑊𝑝𝑝 𝛾𝛾𝑝𝑝⁄

𝑊𝑊𝑝𝑝 𝛾𝛾𝑝𝑝⁄ + �1 −𝑊𝑊𝑝𝑝� 𝛾𝛾𝑝𝑝�
 

 have to be converted to volume 
fractions: 

(2) 

where Wp

For each nanoclay reinforcement, using Eq.2 the volume fraction of nanoclay c is obtained as 
(Table 1.): 

, 𝛾𝛾𝑝𝑝  and 𝛾𝛾𝑚𝑚  are the weight fraction of nanoclay, specific weight of nanoclay and 
specific weight of matrix respectively. 

Table 1. Conversion of weight fractions of nanoclay to volume fractions 

Weight fraction of nanoclay (Wp Volume fraction of nanoclay (c) ) 
0.2% 0.095% 
1% 0.48% 
3% 1.44% 
6% 2.93% 
10% 5% 

 

Before starting the Mori-Tanaka calculation, we first analyzed the electron microscopy images 
we obtained for our specimens showing the distribution of nanoclay particles. First, it was noted 
that not all particles were oriented and they had different sizes. There was also evidence of 
agglomeration at the higher reinforcement percentages. Thus, any realistic micromechanical 
model should take into account the different sizes, (including thickness) and distribution patterns 
of the particles. This would result in a hopelessly complex model to perform analytical 
calculations. Here, we propose to use a modified Mori-Tanaka approach to better predict the 
elastic properties of the nanocomposite. Hence, in the Mori-Tanaka formulas we assume that we 
may have particles of different thicknesses depending on the reinforcement percentage. That is 
for each percentage, we assume a composition with different particle thicknesses. As a 
consequence, at high percentages larger N values and at lower percentages smaller N values 
were used in the calculations. However, for epoxy based specimens N=6 was assumed. 

Table 2. shows the composition of nanoclay particles depending on the reinforcement 
percentage. 
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Table 2.  Nanoclay flake number composition for each percentage 

Nanoclay Reinforcement Composition of Flakes Number 
0.2% 100% N=1 
1% 40% N=1 

30% N=2 
30% N=3 

3% 40% N=2 
30% N=3 
30% N=4 

6% 100% N=5 
10% 100% N=6 

 

Using this composition, we recalculated the Mori-Tanaka results for three different formulations 
namely, “Oriented Particles”, “2-D randomly distributed particles” and “3-D randomly 
distributed particles” to account for possible different nanoclay particle distribution. In all the 
calculations, the particle diameter D was kept constant. 

Matrix1 :

E

 PP 3371 

m

ν

 = average experimental Young’s modulus at each temperature 

m

V

 = average experimental Poisson’s ratio result at each temperature 

m

W

 = volume fraction of matrix ( calculated from weight fraction of matrix) 

m

γ

 = weight fraction of matrix 

m = 8,829N/m3

µ

 (specific weight of matrix) 

m

λ

 = calculated average experimental shear modulus at each temperature 

m

 

 = calculated average experimental Lamé constant at each temperature  

Matrix 2:

E

 EPON 828 epoxy 

m

ν

 = 2.8177 GPa (average experimental result at room temperature) 

m = 0. 3105 (average experimental result at room temperature) 
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Vm

W

 = volume fraction of matrix ( calculated from weight fraction of matrix) 

m

γ

 = weight fraction of matrix 

m = 15,696N/m3

µ

 (specific weight of matrix) 

m

λ

 =  1.075 GPa (calculated) 

m =  1.762 GPa (calculated) 

Particle :

E

 Nanoclay 

nanoclay

E

 = 300 GPa (assumed from molecular dynamics calculations) 

p = effective Young’s modulus of particle = Enanoclay(N.ds

ν

/t) ( Referring to [2] and Figure 

1) 

p

V

 = 0. 2 (assumed) 

p

W

 = c = volume fraction of nanoclay (calculated from weight fraction of nanoclay) 

p

γ

 = weight fraction of nanoclay 

p = 18,639 N/m3

µ

 (specific weight of nanoclay) 

p

λ

 = effective shear modulus calculated for each particle geometry 

p

The average experimental values of the Young’s modulus  (E

 = effective Lamé constant calculated for each particle geometry 

m) and Poisson’s ratio (νm

Table 3. Elastic properties of PP 3371 at various temperatures 

) for PP 
3371 at each temperature are summarized in Table 3. 

Temperature Young’s Modulus Em Poisson’s Ratio  (GPa) 
-65°F 3.866 0.3429 
-4°F 3.346 0.3438 
RT 1.200 0.3947 

120°F 0.616 0.4038 
-160°F 0.392 0.4256 
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2.1-1) Oriented Nanoclay Particles 

Referring to [15], the normalized longitudinal Young’s modulus (parallel to the tensile test 
direction), the normalized transverse Young’s modulus, the normalized in plane shear modulus, 
the normalized out of plane shear modulus, the normalized plane strain bulk modulus and the 
major Poisson’s ratio can be expresses as: 

[ ]
11

3 4 5

1
1 2 (1 ) (1 ) / 2m m m m

E
E c A A A A Aν ν ν

=
+ − + − + +

 (3) 

 

22

1 2

1
1 ( 2 )m m

E
E c A A Aν

=
+ +

 (4) 

 

21

1212

1
2(1 )mm

p m

c

c S

µ
µµ

µ µ

= +
+ −

−

 
(5) 

 

13

0
2323

1
2(1 )m

p m

c

c S

µ
µµ

µ µ

= +
+ −

−

 
(6) 

 

[ ]{ }
13

21 21 3 21 4

(1 )(1 2 )
1 (1 2 ) 2( ) 1 (1 2 ) /

m m

m m m m

K
K c A A A

ν ν
ν ν ν ν ν ν

+ −
=

− + + − + − +
 (7) 

where m m mK λ µ= +  

2 22 22
21

11 13 13

1 1
4

E E
E K

ν
µ

 
= − + 

 
 (8) 

 

and c is the volume fraction of nanoclay and the coefficients A1, A2, A3, A4, A5

( )1 1 4 5 22A D B B B= + −

 and a are given 
by: 

 (9) 
 

( ) ( )2 1 2 4 51A D B B B= + − +  (10) 
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3 1 1 3A B D B= −  (11) 
 

( )4 1 1 31 2A D B B= + −  (12) 
 

( ) ( )5 1 4 51 /A D B B= − −  (13) 
and 

( )2 3 1 4 52A B B B B B= − +  (14) 
with 

1 1 2B cD D= + ( )( )1 1111 22111 2c D S S+ − +  (15) 
 

2 3B c D= + ( )( )1 1122 2222 22331 c D S S S+ − + +  (16) 
 

3 3B c D= + ( ) ( )1111 1 22111 1c S D S + − + +   (17) 

4 1 2B cD D= + ( )( )1122 1 2222 22331 c S D S S+ − + +  (18) 
 

5 3B c D= + ( )( )1122 2222 1 22331 c S S D S+ − + +  (19) 
and 

( ) ( )1 1 2 p m p mD µ µ λ λ= + − −  (20) 
 

( ) ( )2 2m m p mD λ µ λ λ= + −  (21) 
 

( )3 m p mD λ λ λ= −  (22) 
 

The Di (i=1,2,3) terms are defined by using µm, λm and µp, λp, which are the Lame constants of 
the matrix and particles, respectively. In the Bi (i=1,2,3) terms, the components of Eshelby’s 
tensor Sijkl

( )
2 2

1111 2 2

1 3 1 31 2 1 2
2 1 1 1m m

m

S gα αν ν
ν α α

  − = − + − − +  − − −   

 given below are used: 

 (22) 

 



UNCLASSIFIED  
9 

( ) ( ) ( )
2

2222 3333 2 2

3 1 91 2
8 1 1 4 1 4 1m

m m

S S gα ν
ν α ν α

 
 = = + − −

− − − −  
 (23) 

 

( ) ( ) ( )
2

2233 3322 2 2

1 31 2
4 1 2 1 4 1m

m

S S gα ν
ν α α

    = = − − + − − −    
 (24) 

 

( ) ( ) ( )
2 2

2211 3311 2 2

1 1 3 1 2
2 1 1 4 1 1 m

m m

S S gα α ν
ν α ν α

 
= = − + − − − − − − 

 (25) 

 

( ) ( ) ( )1122 1133 2 2

1 1 1 31 2 1 2
2 1 1 2 1 2 1m m

m m

S S gν ν
ν α ν α

    = = − − + + − + − − − −    
 (26) 

 

( ) ( ) ( )
2

2323 3232 2 2

1 31 2
4 1 2 1 4 1m

m

S S gα ν
ν α α

    = = + − − − − −    
 (27) 

 

( )
( )22

1212 1313 2 2

3 11 1 11 2 1 2
4 1 1 2 1m m

m

S S g
ααν ν

ν α α

  ++  = = − − − − − − − −    
 (28) 

 

Here νm

( )
( ){ }1 22 1

3 22
' 1 cosh

1
g α α α α

α
−= − −

−

 is the Poisson’s ratio of the matrix. In Eshelby’s tensor, the g term has two different 
expressions depending on the aspect ratio of the inclusion: 

   when 1α >  (29.a) 

  ( )
( ){ }1 21 2

3 22
cos 1

1
g α α α α

α
−= − −

−
   when 1α <  (29.b) 

Using the particle composition assumed in Table 2, the Young’s modulus and Poisson’s ratio are 
calculated for each reinforcement percentage at each temperature. The results are summarized in 
Tables 4 and 5 for PP 3371 and epoxy respectively and compared with the experimental data 
presented in [1]. 
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Table 4. Comparison of Mori-Tanaka and Experimental results for oriented particles in PP 3371 matrix ( Dp=200 nm, Enanoclay

PP 3371 
Reinforcement 

=300 
GPa) at each temperature 

Enanoclay D
(GPa) 

p Particle 
Composition 

 
(nm) 

Ep t 
(GPa) p Temperature  (nm) 

Young’s 
M. 

(Exp.) 
(GPa) 

E11
Poisson’s 

Ratio 
(Exp.) 

 
(GPa) ν12 

0.2% 300 200 100% N=1 300 0.615 

-65°F 4.284 4.078 0.3283 0.3467 
-4°F 3.713 3.5514 0.3307 0.3481 
RT 1.317 1.3379 0.4167 0.4072 

120°F 0.728 0.7079 0.4350 0.4212 
160°F 0.449 0.4586 0.4782 0.4481 

1% 300 200 
40% N=1 
30% N=2 
30% N=3 

300 
122.388 
102.216 

0.615 
3.015 
5.415 

-65°F 4.603 4.46795 0.3193 0.35255 
-4°F 4.008 3.92262 0.3156 0.35453 
RT 1.508 1.56593 0.4056 0.4216 

120°F 0.765 0.85319 0.4631 0.43839 
160°F 0.465 0.56118 0.4715 0.46875 

3% 300 200 
40% N=2 
30% N=3 
30% N=4 

122.388 
102.216 
94.434 

3.015 
5.415 
7.815 

-65°F 4.694 4.68366 0.3076 0.35622 
-4°F 4.179 4.11276 0.3114 0.35843 
RT 1.628 1.61512 0.3852 0.4268 

120°F 0.828 0.86217 0.4355 0.44271 
160°F 0.497 0.55982 0.4523 0.47241 

6% 300 200 100% N=5 90.308 10.215 

-65°F 4.973 4.8933 0.3039 0.3595 
-4°F 4.212 4.289 0.3056 0.3618 
RT 1.646 1.6472 0.3722 0.4291 

120°F 0.833 0.8664 0.4334 0.4435 
160°F 0.503 0.5583 0.5077 0.4722 

10% 300 200 100% N=6 87.753 12.615 

-65°F 5.092 5.4202 0.2983 0.3657 
-4°F 4.333 4.765 0.2928 0.3683 
RT 1.742 1.8547 0.3725 0.4397 

120°F 0.866 0.9789 0.4111 0.4551 
160°F 0.515 0.632 0.4896 0.4854 



UNCLASSIFIED  
11 

Table 5. Comparison of Mori-Tanaka and Experimental results for oriented particles in epoxy matrix ( Dp=200 nm, Enanoclay

PP 3371 
Reinforcement 

=300 
GPa) at RT 

Enanoclay D 
(nm) (GPa) 

Particle 
Composition 

Ep t 
(GPa) p Temperature  (nm) 

Young’s 
M. 

(Exp.) 
(GPa) 

E11
Poisson’s 

Ratio 
(Exp.) 

 
(GPa) ν12 

0% 

300 200 100% N=6 87.753 12.615 RT 

2.8177 2.8177 0.3105 0.3105 
1% 2.9127 2.8791 0.3238 0.3150 
3% 2.9840 2.9977 0.3288 0.3236 
6% 3.0965 3.1682 0.3340 0.3316 
10% 3.3427 3.3880 0.3348 0.3404 
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2.1-2) 2-D Randomly Distributed Nanoclay Particles 

Here the nanoclay flakes are in a plane parallel to test the direction, but are randomly distributed 
in the plane. Referring to [16], the normalized in plane Young’s modulus, the normalized in 
plane shear modulus, the normalized out of plane shear modulus and the normalized out of plane 
Young’s modulus for the case of 2-D randomly distributed nanoclay particles can be expressed 
as: 

11

11

1
1m

E
E cp

 
=  + 

 (30) 

 

where c is the volume fraction given in equation (2) and p11

[ ]
[ ]
[ ]

1 2 3 4 5
11

1 2 1212

5 3 1 2 3 4 5
2

3 4 5 1 2

4 1 2 2 4 5
2

3 4 5 1 2

2( )1 1
1 ( ) 16 4 2 / ( )

(1 )(1 ) 2 2( )
2 (1 ) 1 ( ) 8

(1 ) 1 ( ) 2
2 (1 ) 1 ( ) 4

m p m

m m

m m

a a a a a ap
c b b a S

cb c b a a a a a a
c b b cb c b b a

cb c b b a a a a
c b b cb c b b a

µ µ µ

ν ν

ν ν

 + − + + = − + −  + −   
− + + − + + +

−
− + + +

− + + + − + −
+

− + + +

 is: 

 (31) 

 

12

12

1
1m cp

µ
µ

 
=  + 

 (32) 

with p12

12 1 2 3 4 5
1212

1122 2222 3 4 5

1111 2211 1 2 1122 2233 3 4 5

1212

1212

42( ) /
2 / ( )

{8 [( 1)(2 )
2( 1)( ) ( )(2 )

4 (2 1) ]}
2 / ( )

m p m

m p m

ap a a a a a a
S

a c S S a a a a
S S a a S S a a a a

a S
S

µ µ µ

µ µ µ

 
= + − + + − 

+ −  
+ − + − −

+ − − + + − − +
−

−
+ −

 given as: 

 (33) 

 

13

13

1
1m cp

µ
µ

 
=  + 

 (34) 

with p13 
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13
1313 2323

1313 2323

1313 2323

1 1 /
2 / ( ) 2 / ( )

2 1 2 12
2 / ( ) 2 / ( )

m p m m p m

m p m m p m

p
S S

S Sc
S S

µ µ µ µ µ µ

µ µ µ µ µ µ

 
= − + 

+ − + −  
  − − − +  + − + −    

 (35) 

 

33

33

1
1m

E
E cp

=
+

 (36) 

where p33

[ ] [ ]{ }
[ ]{ }

3 3 5 3 3 4 5 1 2 0 4 4 5

2
3 4 5 1 2

(1 ) (2 ) 1 ( 2 ) ( ) /

2 2 (1 ) 1 ( )
mp cb cb a a a a c b b b a a a

a c b b cb c b b

ν ν= + + + − − + + + +

− + + +

 is, 

 (37) 

 

The definition of the components of Eshelby’s tensor and g were given in section 2.1-1. The 
other constants which are used to calculate the material properties of 2-D randomly distributed 
nanoclay particles are given below: 

1 2222 22336( )( )( 1) 2( ) 6 ( )p m p m m p p m p p ma S Sκ κ µ µ κ µ κ µ κ µ µ= − − + − − − + −  (38) 
 

2 1133 06( )( ) 2( )p m p m m p pa Sκ κ µ µ κ µ κ µ= − − + −  (39) 
 

3 33116( )( ) 2( )p m p m m p p ma Sκ κ µ µ κ µ κ µ= − − − − −  (40) 
 

4 11116( )( )( 1) 2( ) 6 ( )p m p m m p p m p p ma Sκ κ µ µ κ µ κ µ µ κ κ= − − − + − + −  (41) 
 

5 3322 33331/ [ 1 / ( )]p p ma S S µ µ µ= − + − −  (42) 
 

1133 3311 1111 3322 3333

1133 3311 1111 3322 3333

1111 2222 2233

6( )( )[2 ( 1)( 1)]

2( )[2( ) ( )]

6 ( )( 1) 6 ( )( 1) 6

p m p m

m p p m

p p m p p m p p

a S S S S S
S S S S S

S S S

κ κ µ µ

κ µ κ µ

κ µ µ µ κ κ κ µ

= − − − − + −

+ − + + − −

− − − − − + − −

 (43) 
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1 3 1122 2222 2233

4 2222 2233 1122 5 2222 2233

1 1111 2211 2 1111 2211

1212 1212

(1/16 ){2 (6 1)
[3( 1) 2 ] 3 ( 1)

2 [3( 1) ] 2 ( 3 1)
4 (2 1) / [2 / ( )]}m p m

b a a S S S
a S S S a a S S

a S S a S S
a S S µ µ µ

= + + −
+ + − + + − −
+ − + − + −
− − + −

 (44) 

 

[ ]

[ ]

2 3 1111 2222 2233

4 1122 2222 2233 5 2222 2233

1 1111 2211 2 2211 1111

1212 1212

(1/16 ){2 2 3( 1)
(6 1) ( 1)

2 ( 3 1) 2 3( 1)

4 (2 1) / 2 / ( ) }m p m

b a a S S S
a S S S a a S S

a S S a S S

a S S µ µ µ

= + + −

+ + + − + − −

+ + − − + −

 + − + − 

 (45) 

 

3 2 1111 2211 4 1122 2222 2233

5 2222 2233

(1/ ){ 2 ( 1) (2 1)
( 1)}

b a a S S a S S S
a a S S

= − + − + + + −
− − −

 (46) 

 

4 1 2 2211 3 4 2222 2233

5 2222 2233

(1/ 4 ){2( ) (2 )( 1)
( 1)}

b a a a S a a S S
a a S S

= − + + + −
− − −

 (47) 

 

5 2 2211 4 2222 2233

5 2222 2233

(1/ 2 ){ 2 ( 1)
( 1)}

b a a S a S S
a a S S

= − + + −
+ − −

 (48) 

 

Again using the particle composition given in Table 2, the elastic properties are calculated for 
each reinforcement percentage and at each temperature. The calculated results for 2-D randomly 
distributed particles for PP 3371 and epoxy are summarized in Tables 6. and 7. respectively and 
compared with those obtained experimentally [1]. 
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Table 6. Comparison of Mori-Tanaka and Experimental results for 2-D randomly distributed particles in PP 3371 matrix ( Dp=200 
nm, Enanoclay

PP 3371 
Reinforcement 

=300 GPa) at each temperature 

Enanoclay D 
(nm) (GPa) 

Particle 
Composition 

Ep t 
(GPa) p Temperature  (nm) 

Young’s 
M. 

(Exp.) 
(GPa) 

E11
Poisson’s 

Ratio 
(Exp.) 

 
(GPa) ν12 

0.2% 300 200 100% N=1 300 0.615 

-65°F 4.284 3.9547 0.3283 0.348 
-4°F 3.713 3.4325 0.3307 0.3495 
RT 1.317 1.2607 0.4167 0.4086 

120°F 0.728 0.6565 0.4350 0.4225 
160°F 0.449 0.4222 0.4782 0.4493 

1% 300 200 
40% N=1 
30% N=2 
30% N=3 

300 
122.388 
102.216 

0.615 
3.015 
5.415 

-65°F 4.603 4.11997 0.3193 0.35506 
-4°F 4.008 3.58864 0.3156 0.35711 
RT 1.508 1.35765 0.4056 0.42201 

120°F 0.765 0.71777 0.4631 0.43709 
160°F 0.465 0.4664 0.4715 0.46639 

3% 300 200 
40% N=2 
30% N=3 
30% N=4 

122.388 
102.216 
94.434 

3.015 
5.415 
7.815 

-65°F 4.694 4.23049 0.3076 0.35911 
-4°F 4.179 3.68571 0.3114 0.36125 
RT 1.628 1.38646 0.3852 0.42721 

120°F 0.828 0.72621 0.4355 0.44188 
160°F 0.497 0.46902 0.4523 0.47103 

6% 300 200 100% N=5 90.308 10.215 

-65°F 4.973 4.3515 0.3039 0.3619 
-4°F 4.212 3.7884 0.3056 0.3639 
RT 1.646 1.4118 0.3722 0.4286 

120°F 0.833 0.7343 0.4334 0.4422 
160°F 0.503 0.4724 0.5077 0.4706 

10% 300 200 100% N=6 87.753 12.615 

-65°F 5.092 4.6144 0.2983 0.3676 
-4°F 4.333 4.0236 0.2928 0.3699 
RT 1.742 1.5141 0.3725 0.4369 

120°F 0.866 0.7895 0.4111 0.451 
160°F 0.515 0.5092 0.4896 0.4809 
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Table 7. Comparison of Mori-Tanaka and Experimental results for 2-D randomly distributed particles in epoxy matrix ( Dp=200 nm,  
Enanoclay

PP 3371 
Reinforcement 

=300 GPa) at RT 

Enanoclay D 
(nm) (GPa) 

Particle 
Composition 

Ep t 
(GPa) p Temperature  (nm) 

Young’s 
M. 

(Exp.) 
(GPa) 

E11
Poisson’s 

Ratio 
(Exp.) 

 
(GPa) ν12 

0% 

300 200 100% N=6 87.753 12.615 RT 

2.8177 2.8177 0.3105 0.3105 
1% 2.9127 3.0249 0.3238 0.3119 
3% 2.9840 3.4486 0.3288 0.3399 
6% 3.0965 4.1083 0.3340 0.4168 
10% 3.3427 5.0367 0.3348 0.5236 
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2.1-3) 3-D Randomly Distributed Nanoclay Particles 

Again referring to [16], the effective bulk modulus, shear modulus, Young’s modulus and 
Poisson’s ratio for the case of 3-D randomly distributed particles can be expressed as: 

2

1

pp
p

=  (49) 

 

2

1

qq
q

=  (50) 

 

( )( ) ( )( )1122 2222 2233 3 4 1111 2211 1 2
1

2 1 2 1 2
1

3
S S S a a S S a a

p c
a

+ + − + + + − −  = +  (51) 

 

( )1 2 3 4
2

2
3

a a a a
p

a
− − −  =  (52) 

 

( ) ( )

( )( )

( )( ) ( )( )

23231212
1 1122 2233 3 4 5

0 0
1212 2323

1 0 1 0

1111 2211 1 2 1122 2222 3 4 5

2 12 12 1 11 2
5 3 152 2

2 1 1 2

SSq c S S a a a a
aS S

S S a a S S a a a a

µ µ
µ µ µ µ


 −−= − + − − − + 
 + +

− −



+ − − + + − + − − 



 (53) 

 

( ) ( )
( )

2

1212 2323

1 2 3 4 5

2 1 1 1
5 32 2

1 2
15

m m

p m p m

q
S S

a a a a a a
a

µ µ
µ µ µ µ

= − −
+ +

− −

+ + − + +  

 (54) 

 

1
m

cp
κκ =
+

 (55) 
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1
m

cp
µµ =
+

 (56) 

 

3

1
3

E µ
µ
κ

=
+

 
(57) 

 

1
2 6

Eν
κ

= −  (58) 

 

All the constant coefficients appearing in Eqs. (49-58) were given in sections 2.1-1 and 2.1-2 

Using the above formulation, the Young’s modulus and Poisson’s ratio are computed for PP 
3371 and epoxy and displayed in Tables 8 and 9 respectively. For comparison purpose the 
experimental results presented in [1] for each reinforcement percentage and at each temperature 
are also included in Tables 8 and 9. 
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Table 8. Comparison of Mori-Tanaka and Experimental results for 3-D randomly distributed particles in PP 3371 matrix ( Dp=200 
nm, Enanoclay

PP 3371 
Reinforcement 

=300 GPa) at each temperature 

Enanoclay D 
(nm) (GPa) 

Particle 
Composition 

Ep t 
(GPa) p Temperature  (nm) 

Young’s 
M. 

(Exp.) 
(GPa) 

E11
Poisson’s 

Ratio 
(Exp.) 

 
(GPa) ν12 

0.2% 300 200 100% N=1 300 0.615 

-65°F 4.284 3.9772 0.3283 0.3406 
-4°F 3.713 3.4543 0.3307 0.3412 
RT 1.317 1.2741 0.4167 0.3903 

120°F 0.728 0.6656 0.4350 0.3983 
160°F 0.449 0.4284 0.4782 0.4203 

1% 300 200 
40% N=1 
30% N=2 
30% N=3 

300 
122.388 
102.216 

0.615 
3.015 
5.415 

-65°F 4.603 4.18724 0.3193 0.33662 
-4°F 4.008 3.65366 0.3156 0.33689 
RT 1.508 1.39857 0.4056 0.3837 

120°F 0.765 0.74513 0.4631 0.39066 
160°F 0.465 0.48553 0.4715 0.41289 

3% 300 200 
40% N=2 
30% N=3 
30% N=4 

122.388 
102.216 
94.434 

3.015 
5.415 
7.815 

-65°F 4.694 4.31937 0.3076 0.33434 
-4°F 4.179 3.77001 0.3114 0.33461 
RT 1.628 1.43102 0.3852 0.38224 

120°F 0.828 0.75303 0.4355 0.39015 
160°F 0.497 0.48657 0.4523 0.413 

6% 300 200 100% N=5 90.308 10.215 

-65°F 4.973 4.4607 0.3039 0.3325 
-4°F 4.212 3.8898 0.3056 0.3329 
RT 1.646 1.4581 0.3722 0.3818 

120°F 0.833 0.7603 0.4334 0.3904 
160°F 0.503 0.4889 0.5077 0.4136 

10% 300 200 100% N=6 87.753 12.615 

-65°F 5.092 4.7831 0.2983 0.3279 
-4°F 4.333 4.1795 0.2928 0.3282 
RT 1.742 1.5842 0.3725 0.3767 

120°F 0.866 0.8285 0.4111 0.3854 
160°F 0.515 0.534 0.4896 0.4091 
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Table 9. Comparison of Mori-Tanaka and Experimental results for 3-D randomly distributed particles in epoxy matrix ( Dp=200 nm,  
Enanoclay

PP 3371 
Reinforcement 

=300 GPa) at RT 

Enanoclay D 
(nm) (GPa) 

Particle 
Composition 

Ep t 
(GPa) p Temperature  (nm) 

Young’s 
M. 

(Exp.) 
(GPa) 

E11 
Poisson’s 

Ratio 
(Exp.) (GPa) ν12 

0% 

300 200 100% N=6 87.753 12.615 RT 

2.8177 2.8177 0.3105 0.3105 
1% 2.9127 2.9363 0.3238 0.3077 
3% 2.9840 3.1794 0.3288 0.3025 
6% 3.0965 3.5594 0.3340 0.2953 
10% 3.3427 4.0978 0.3348 0.2868 
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2.1-4) Comparison of Experimental Results with Mori-Tanaka Calculations for PP Based 
Nanocomposites 

To compare the experimental results with those predicted using the modified Mori-Tanaka 
formulations, we first display their variation with temperature for each reinforcement percentage. 
Figures 2.(a)-(e) depict the comparison of the three Mori-Tanaka calculations ( for oriented, 2-D 
randomly distributed and 3-D randomly distributed particles) with the experimental results. 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

Figure 2. Comparison of Young’s modulus obtained from Mori-Tanaka formulations and 
experimental results of nanoclay reinforced PP 3371 specimens at various temperatures (a) for 

0.2%, (b) for 1%, (c) for 3%, (d) for 6% and (e) for 10% 



UNCLASSIFIED  
23 

The results shown above first indicate that the Mori-Tanaka calculations compare well with 
those obtained experimentally. The results for oriented particles appear to provide the best fit 
with the experimental data for all reinforcement percentages. The results for 2-D and 3-D 
randomly distributed particles appear to be close to each other. As was discussed in [1], the 
Young’s modulus drops significantly when the temperature increases from -4°F to room 
temperature. This is due to the fact that the glass transition temperature Tg

 

 of PP is around 14°F 
and the material goes from a glassy state to a rubbery state. The Mori-Tanaka calculations also 
capture this feature. Since the Young’s modulus results at lower temperatures are approximately 
one order of magnitude higher than those at higher temperatures, it is difficult to discern from 
Figure 2. the relative effect of temperature on the best fit with experimental data. Thus the 
variation of the Young’s modulus with reinforcement percentage is plotted for each temperature 
and displayed in Fig 3 (a)-(e).  

(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

Figure 3. Comparison of Young’s modulus obtained from experimental and from oriented, 2-D 
and 3-D random Mori-Tanaka calculations for various nanoclay reinforcement percentages (a) at 

160°F, (b) at 120°F, (c) at RT, (d) at -4°F and (e) at -65°F 
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As noted earlier, the Mori-Tanaka results for oriented particles best fit the experimental results, 
except at 120°F and 160°F. At 160°F the results for 3-D randomly distributed particles are closer 
to the experimental results. One may also note that at 10% reinforcement there is a significant 
difference between the predicted Mori-Tanaka and experimental results. This discrepancy at 
higher reinforcement percentage was also reported in [2]. This may be due to agglomeration of 
nanoclay particles at higher percentages resulting in larger particle size, and consequently higher 
Young’s modulus. 

Extensive results were also obtained for the Poisson’s ratio (see [12]). Here we provide sample 
results and their comparison with experimental data for one reinforcement percentage and one 
temperature value only. The comparisons are displayed in Figures 4 and 5. 

 
Figure 4. Comparison of Poisson’s ratios obtained from Mori-Tanaka formulations and 

experimental results for 1% nanoclay reinforced PP 3371 specimens at various temperatures 
   

 
Figure5. Comparison of Poisson’s ratios obtained from experiments and oriented, 2-D and 3-D 

random Mori-Tanaka calculations at RT for various reinforcement percentages 
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Figure 4. shows the variation of Poisson’s ratios obtained from the three Mori-Tanaka 
formulations with temperature for 1% reinforcement and their comparison with the experimental 
results. It may be noted that the theoretical predictions by and large match the experimental 
results both in terms of magnitude and trend. As was noted in [1], some of the difference 
between theory and experiment may be due to the difficulty in measuring the Poisson’s ratio 
accurately, especially at higher temperatures. It is also observed that, the change in the value of 
Poisson’s ratio is more pronounced around the glass transition temperature. Figure5. depicts the 
variation of the Poisson’s ratio with reinforcement percentage at RT. The results are again 
compared with the experimental data. In general the theoretical calculations give a reasonable 
estimate of the Poisson’s ratio. For this case (at RT), the results for 3-D randomly distributed 
particles appear to fit best the experimental data. 

2.1-5) Comparison of experimental results with Mori-Tanaka calculations for epoxy based 
nanocomposites 

Figures 6 and 7 show the comparison of Young’s modulus and Poisson’s ratio obtained from 
experiments and Mori-Tanaka calculations for EPON 828 epoxy nanoclay reinforced specimens 
at room temperature. For epoxy there is divergence between experimental and calculated results. 
This may be due to the fact that more agglomeration of nanoclay particles may occur because of 
the higher viscosity of epoxy relative to PP. 

 
Figure 6. Comparison of Young’s modulus obtained from experiments and Mori-Tanaka 

calculations for oriented, 2-D randomly distributed and 3-D randomly distributed particles at 
room temperature 
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Figure 7. Comparison of Poisson’s ratio obtained from experiments and Mori-Tanaka 

calculations for oriented, 2-D randomly distributed and 3-D randomly distributed particles at 
room temperature 

 

2.2 EFFECT OF VOIDS 

When SEM pictures of the nanocomposite are analyzed, it is observed that at high reinforcement 
percentages (contrary to low percentages) there may be voids between the particles and matrix. 
Because of this observation it was decided to modify the Mori-Tanaka calculations by including 
the effect of voids. 

We assume a parabolic distribution of voids as a function of reinforcement percentage since 
there are fewer voids at lower percentages than at higher percentages. With this assumption the 
volume fraction of particles can be calculated as follows: 

Defining, 

Vd

W

 : maximum void percentage 

p

𝜗𝜗𝑑𝑑 : void fraction at each percentage 

: nanoclay weight percentage 

The parabolic void distribution can be expressed as: 

 𝜗𝜗𝑑𝑑 = 𝐴𝐴𝑊𝑊𝑝𝑝
2 (59) 

Assuming maximum void percentage occurs at Wp

Thus, Eq. (59) becomes: 

=10% the unknown A can be obtained from: 

𝑉𝑉𝑑𝑑 = 𝐴𝐴(0.1)2 → 𝐴𝐴 = 100𝑉𝑉𝑑𝑑  
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𝜗𝜗𝑑𝑑 = 100𝑉𝑉𝑑𝑑𝑊𝑊𝑝𝑝
2 (60) 

 

The total volume V and total weight W are: 

𝑉𝑉 = 𝑉𝑉𝑝𝑝 + 𝑉𝑉𝑚𝑚 + 𝑉𝑉𝑣𝑣 (61) 
𝑊𝑊𝑝𝑝 + 𝑊𝑊𝑚𝑚 = 1 (62) 
 

where, 

𝑉𝑉𝑝𝑝: total volume of particles 

𝑉𝑉𝑚𝑚: total volume of matrix 

𝑉𝑉𝑣𝑣: total volume of voids 

From,  

𝑉𝑉𝑝𝑝 + 𝑉𝑉𝑚𝑚 =
𝑊𝑊.𝑊𝑊𝑝𝑝

𝛾𝛾𝑝𝑝
+
𝑊𝑊�1 −𝑊𝑊𝑝𝑝�

𝛾𝛾𝑚𝑚
 (63) 

𝑉𝑉𝑣𝑣 = 𝑉𝑉𝜗𝜗𝑑𝑑  (64) 
 

where 𝛾𝛾𝑝𝑝  and 𝛾𝛾𝑚𝑚  are the specific weights of nanoclay and matrix respectively. The total volume 
V is obtained as: 

𝑉𝑉 =
𝑊𝑊.𝑊𝑊𝑝𝑝

𝛾𝛾𝑝𝑝
+
𝑊𝑊�1 −𝑊𝑊𝑝𝑝�

𝛾𝛾𝑚𝑚
+ 𝑉𝑉𝜗𝜗𝑑𝑑 

or 

𝑉𝑉 =
𝑊𝑊.

𝑊𝑊𝑝𝑝
𝛾𝛾𝑝𝑝

+ 𝑊𝑊
�1 −𝑊𝑊𝑝𝑝�

𝛾𝛾𝑚𝑚
(1 − 𝑣𝑣𝑑𝑑)  

(65) 

 

With the new total volume V, we redefine the volume fraction c of particles in the presence of 
voids as: 

𝑐𝑐 =
𝑉𝑉𝑝𝑝
𝑉𝑉

=

𝑊𝑊𝑝𝑝
𝛾𝛾𝑝𝑝

(1 − 𝜗𝜗𝑑𝑑)

𝑊𝑊𝑝𝑝
𝛾𝛾𝑝𝑝

+
1 −𝑊𝑊𝑝𝑝
𝛾𝛾𝑚𝑚

 (66) 
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In the ensuing sections, the Young’s modulus and the Poisson’s ratio are recalculated using the 
three different Mori-Tanaka approaches with the new volume fraction c. For all cases the 
maximum void fraction Vd

2.2-1) Oriented Nanoclay Particles with Effect of Voids 

 is assumed to be 6%. 

Figures 8-17 show the comparison of experimental results and oriented Mori-Tanaka 
calculations with and without voids at various temperatures. 

 
Figure 8. Comparison of Young’s modulus obtained from experiments and oriented Mori-

Tanaka calculations with and without voids at 160°F 
 

 
Figure 9. Comparison of Poisson’s ratio obtained from experiments and oriented Mori-Tanaka 

calculations with and without voids at 160°F 
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Figure 10. Comparison of Young’s modulus obtained from experiments and oriented Mori-

Tanaka calculations with and without voids at 120°F 
 

 
Figure 11. Comparison of Poisson’s ratio obtained from experiments and oriented Mori-Tanaka 

calculations with and without voids at 120°F 
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Figure 12. Comparison of Young’s modulus obtained from experiments and oriented Mori-

Tanaka calculations with and without voids at RT 
 

 
Figure 13. Comparison of Poisson’s ratio obtained from experiments and oriented Mori-Tanaka 

calculations with and without voids at RT 
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Figure 14. Comparison of Young’s modulus obtained from experiments and oriented Mori-

Tanaka calculations with and without voids at -4°F 
 

 
Figure 15. Comparison of Poisson’s ratio obtained from experiments and oriented Mori-Tanaka 

calculations with and without voids at -4°F 
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Figure 16. Comparison of Young’s modulus obtained from experiments and oriented Mori-

Tanaka calculations with and without voids at -65°F 
 

 
Figure 17. Comparison of Poisson’s ratio obtained from experiments and oriented Mori-Tanaka 

calculations with and without voids at -65°F 
 

As the results given in the previous figures indicate, the inclusion of voids in the calculations 
affects the value of Young’s modulus mainly at 10% reinforcement but it does not affect the 
Poisson’s ratio significantly. The results obtained by including the effect of voids in general give 
a better match with experimental data. At reinforcement percentages below 10% in some cases 
the curves obtained from the calculations including voids are indistinguishable from those 
without voids. 
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2.2-2) 2-D and 3-D Randomly Distributed Nanoclay Particles with Effect of Voids 

First we recalculated the Mori-Tanaka results for the 2-D random cases by including the effect of 
voids and compared the results with experimental and 2-D random calculations without voids. 

Next, the Mori-Tanaka calculations were repeated for the 3-D random cases by including the 
effect of voids, and compared with those obtained experimentally and from calculations without 
the effect of voids. For both cases the effect of voids on the mechanical properties was 
insignificant. Since the curves are similar to those shown in Figures 8-17, they are not presented 
here. 

2.3 Temperature Effects 

Figures 3.(a)-(e) show that especially at the higher temperatures the Mori-Tanaka results for 
oriented particles do not match the experimental results well. 

Since nanoclay reinforced PP specimens don’t show a pronounced linear material behavior at the 
higher temperatures and Mori-Tanaka calculations depend on linear material properties, we 
decided to include the temperature effect into the Mori-Tanaka calculations for 120°F and 160°F 
by redefining the Young’s modulus. 

At room temperature we have a clear linear behavior for low strains (or stresses) and we can 
calculate the elastic energy density per volume by considering the linear part of the curve. But 
when we perform the tensile tests at higher temperatures the linear portion of the curve is less 
pronounced and the curve is more or less nonlinear (see for example Figure 18. showing the 
initial part of a stress-strain at 160°F).  

 
Figure 18. Initial part of stress-strain curve at 160°F 
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Considering the nonlinear behavior of the material, at high temperatures we believe that it is 
more appropriate to use the secant rather than the tangent in calculating the Young’s modulus. 

To calculate the Young’s modulus at 120°F and 160°F we assume that the elastic energy density 
(recoverable energy) used to calculate the Young’s modulus at room temperature is the same at 
high temperatures.  

Figure 19.(a) and (b) show schematically the secant line and the elastic energy  density using the 
stress-strain curves at 120°F and 160°F. 

 
Figure 19. Calculation of secant Young’s modulus from nonlinear material curve at (a) 120°F 

and (b) 160°F 
 

First we calculate the strain energy density from the linear portion of the stress-strain curve at 
room temperature and then use this elastic energy to determine the strain (or stress) to be used in 
the calculation of the secant Young’s modulus at higher temperatures. 

Using this procedure we recalculated the Young’s modulus of neat PP specimens at 120°F and 
160°F based on the secant line as (Figure 19) : 𝐸𝐸120 = 𝜎𝜎120

𝜀𝜀120
; 𝐸𝐸160 = 𝜎𝜎160

𝜀𝜀160
  and we used these new 

values in the Mori-Tanaka formulas given in Eqs (3)-(8) and the composition assumed in Table 2 
to calculate the elastic properties. 

This temperature effect assumption was considered only for oriented particles in the Mori-
Tanaka calculations. 

Tables 10. and 11 show the Young’s modulus values obtained experimentally and from Mori-
Tanaka calculations using both the tangent and secant definitions at 120°F and 160°F 
respectively. It is noted that there is no significant effect when comparing the Young’s modulus 
whether the results have been obtained from the tangent or secant calculations. 
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Table 10.  Young’s modulus values based on tangent and secant calculations at 120°F 

120°F 
YM Exp. 

(GPa) 
(Tangent) 

YM Mori- Tanaka 
Without 

Temperature Effect 
(GPa) (Tangent) 

YM Exp 
(Secant) (GPa) 

YM Mori-
Tanaka With 
Temp. Effect 

(GPa) (Secant) 
0% 0.61595 0.61595 0.61389 0.61389 

0.2% 0.7285 0.7079 0.72561 0.7057 
1% 0.7646 0.85319 0.76208 0.85054 
3% 0.8283 0.86217 0.82759 0.85941 
6% 0.8332 0.8664 0.8328 0.8635 
10% 0.8664 0.9789 0.85936 0.9757 

 

Table 11.  Young’s modulus values based on tangent and secant calculations at 160°F 

160°F 
YM Exp. 

(GPa) 
(Tangent) 

YM Mori- Tanaka 
Without 

Temperature Effect 
(GPa) (Tangent) 

YM Exp 
(Secant) (GPa) 

YM Mori-
Tanaka With 
Temp. Effect 

(GPa) (Secant) 
0% 0.39204 0.39204 0.38639 0.38639 

0.2% 0.4499 0.4586 0.44771 0.4522 
1% 0.4654 0.4654 0.46195 0.55355 
3% 0.4969 0.4969 0.48835 0.55199 
6% 0.5031 0.5583 0.50229 0.5504 
10% 0.5146 0.632 0.51415 0.623 

 

2.3 FINITE ELEMENT MODELING FOR TENSILE TESTING 

A 3-D Finite Element model of the nanocomposite was developed using ABAQUS software. The 
3-D model is based on the concept of representative volume element of the material. 

The representative volume element has dimensions of (40units) x (40units) x (40units) and 
includes the matrix and oriented disk shaped particles (parallel to the loading direction) as shown 
in Figure 20. The number of particles n is adjusted to result in a fixed 𝑡𝑡 𝐷𝐷�  aspect ratio (used in 
the Mori-Tanaka calculations) and the desired nanoclay reinforcement percentage which varies 
from 0.2% to 10%. 

To demonstrate how the various particle paramaters are calculated, consider the case for 0.2% 
nanoclay reinforcement. For 0.2% reinforcement, the volume fraction of nanoclay, using Eq.(2) 
or Table 1., is 0.095%. 
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Figure 20.  Representative Volume Element 

In the previous section for 0.2% the disk diameter and particle thickness were assumed as: 
D=200nm and t=0.615 nm. 

Thus, 0.615
200

t
D
=  or  D=325.20t. 

To maintain the same aspect ratio, we write; 

1
325.20

c

c

t t
D D

= =  or  Dc=325.20t

Then, assuming n=2 and the total volume as V, from the volume fraction equation t

c 

c

2

4
c

c
Dn t

c
V

π

=

 is found as: 

 (65) 

or 

( )
( )

2 3

3

2 325.20
0.00095

4 40
ctπ

= 0.0715ct→ =  units and 23.25cD = units. 
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For 6% and 10%, tc and Dc

As explained in section 2 and Table 2, for 1% we use a combination of particles with different 

thicknesses. The composition used was 40% of N=1 particles, 30% of N=2 particles and 30% of 

N=3 particles. The volume fraction c corresponding to 1% is 0.48% (Table 1). 

 are calculated similarly. For 1% and 3%, since we have particles of 

different thicknesses the calculation, though in principle the same, is slightly different. To 

illustrate this, consider the case of 1% reinforcement.  

Again, to maintain the same aspect ratios used previously, we calculate the particle thicknesses 

as follows: 

• For N=1 particles, D=200 nm, t=0.615 nm or D=325.20t. If we assume 2 layers with 

particles of this geometry, then with Dc=325.20tc

( )
( )

( )
2 3

3

2 325.20
0.4 0.0048

4 40
ctπ
=

 we obtain: 

 0.0904ct→ = units  and 29.41cD = units. 

• For N=2 particles, D=200 nm, t=3.015 nm or D=66.33t. If we assume 2 layers with 

particles of this geometry, then with Dc=66.33tc

( )
( )

( )
2 3

3

2 66.33
0.3 0.0048

4 40
ctπ
=

 we obtain: 

 0.2371ct→ = units  and 15.73cD = units. 

• For N=3 particles, D=200 nm, t=5.415 nm or D=36.93t. If we assume 1 layer with 

particles of this geometry, then with Dc=36.93tc

( )
( )

( )
2 3

3

36.93
0.3 0.0048

4 40
ctπ
=

 we obtain: 

 0.4414ct→ =  units  and 16.30cD = units. 

The calculations for 3% are similar to those presented above. The calculated particle parameters 

for each reinforcement percentage are given in Table 12. 
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Table 12 The particle parameters used in the finite element calculations for each reinforcement 

percentage 

Reinforcement 
Percentage  n t Dc c 

0.2% 2 0.0715 23.25 

1% 
2 0.0904 29.41 
2 0.2371 15.73 
1 0.4414 16.30 

3% 
2 0.3764 24.97 
2 0.5053 18.66 
1 0.8131 20.81 

6% 6 1.0125 19.82 
10% 10 1.1747 18.62 

 

To explain the methodology used in the finite element model, consider the case for 0.2% 

reinforcement. Here, we have 2 layers with nanoclay particles, in the PP matrix. Figure 21 shows 

the symmetric finite element model constructed for this case. The bottom surface was 

constrained in y-direction and one point in the middle of the bottom surface was fixed to prevent 

translational displacement. The side surfaces were assumed stress free.The boundary conditions 

and loading are shown in Figure 4.60. For loading, a unit displacement was applied at the top 

surface. 
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Figure 21  The boundary conditions and displacement loading for the 0.2% specimens 

The 3-D finite element mesh is shown in Figure 22.
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Figure 22 The mesh structure of the finite element model 
 

The Young’s modulus and the Poison’s ratio are obtained using the total force (F) at the top 

surface and the calculated values of, 𝜎𝜎𝑦𝑦  , 𝜀𝜀𝑥𝑥  and 𝜀𝜀𝑦𝑦  as shown below: 

𝜎𝜎𝑦𝑦 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
=

𝐹𝐹
40𝑥𝑥40

 

𝜀𝜀𝑥𝑥 =
(∆𝑢𝑢)𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

40
  

and 
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 𝜀𝜀𝑥𝑥 = 1
40

 , 

𝐸𝐸 = 𝜎𝜎𝑦𝑦
𝜀𝜀𝑦𝑦

   

and  

𝜗𝜗12 = −
𝜀𝜀𝑥𝑥
𝜀𝜀𝑦𝑦

 

The Young’s modulus and the Poisson’s ratio were calculated using the finite element technique 

for all percentages, namely 0.2%, 1%, 3%, 6% and 10% at -65°F, -4°F and RT. The finite 

element results for Young’s modulus and the Poisson’s ratio are summarized in Tables 13 and 14 

respectively and compared with those obtained from experiments and the Mori-Tanaka 

calculations for oriented particles.  
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Table 13. Comparison of 
m

E
E  values obtained from experiments, Mori-Tanaka and FEM 

calculations at various temperatures 

 
m

E
E  

Reinforcement 
Percentage of 

PP 3371 
Temperature Experimental 

Mori-Tanaka 
Calculation 
(Oriented) 

FEM 

0.2% 
-65ºF (-54ºC) 1.1083 1.0551 1.0489 
-4 ºF (-20ºC) 1.1095 1.0612 1.0539 
Room Temp. 1.0976 1.1148 1.0945 

1% 
-65ºF (-54ºC) 1.1909 1.1559 1.1390 
-4 ºF (-20ºC) 1.1977 1.1722 1.1521 
Room Temp. 1.2569 1.3048 1.2544 

3% 
-65ºF (-54ºC) 1.2146 1.2118 1.1757 
-4 ºF (-20ºC) 1.2487 1.2289 1.1877 
Room Temp. 1.3564 1.3458 1.2668 

6% 
-65ºF (-54ºC) 1.2867 1.2498 1.2066 
-4 ºF (-20ºC) 1.2587 1.2638 1.2162 
Room Temp. 1.3718 1.3443 1.2751 

10% 
-65ºF (-54ºC) 1.3174 1.4023 1.2452 
-4 ºF (-20ºC) 1.2948 1.4239 1.2533 
Room Temp. 1.4520 1.5455 1.3055 
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Table 14. Comparison of 12

m

ν
ν  values obtained from experiments, Mori-Tanaka and FEM 

calculations at various temperatures 

 12

m

ν
ν  

Reinforcement 
Percentage of 

PP 3371 
Temperature Experimental 

Mori-Tanaka 
Calculation 
(Oriented) 

FEM 

0.2% 
-65ºF (-54ºC) 0.9574 1.0111 0.9798 
-4 ºF (-20ºC) 0.9618 1.0125 0.9869 
Room Temp. 1.0557 1.0317 0.9742 

1% 
-65ºF (-54ºC) 0.9311 1.0281 0.9813 
-4 ºF (-20ºC) 0.9179 1.0312 0.9805 
Room Temp. 1.0276 1.0681 0.9764 

3% 
-65ºF (-54ºC) 0.8970 1.0388 0.9725 
-4 ºF (-20ºC) 0.9057 1.0425 0.9724 
Room Temp. 0.9759 1.0813 0.9724 

6% 
-65ºF (-54ºC) 0.8863 1.0462 0.9956 
-4 ºF (-20ºC) 0.8888 1.0497 0.9974 
Room Temp. 0.9429 1.0815 1.0106 

10% 
-65ºF (-54ºC) 0.8699 1.0665 1.0382 
-4 ºF (-20ºC) 0.8516 1.0713 1.0418 
Room Temp. 0.9437 1.1140 1.0689 

 

The results are also depicted in Figures 23-28. 
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Figure 23. Comparison of 
m

E
E  values obtained from the experiments, Mori-Tanaka 

calculations and the finite element model at -65°F 

 

Figure 24.  Comparison of 
m

E
E  values obtained from the experiments, Mori-Tanaka 

calculations and the finite element model at -4°F 
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Figure 25. Comparison of 
m

E
E  values obtained from the experiments, Mori-Tanaka 

calculations and the finite element model at room temperature 

 

Figure 26. Comparison of 12

m

ν
ν  values obtained from the experiments, Mori-Tanaka 

calculations and the finite element model at -65°F 
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Figure 27. Comparison of 12

m

ν
ν  values obtained from the experiments, Mori-Tanaka 

calculations and the finite element model at -4°F 

 

Figure 28. Comparison of 12

m

ν
ν  values obtained from the experimentally, Mori-Tanaka 

calculation and the finite element model at room temperature 
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The results given in Tables 13-14 and Figures 23-28 indicate that the finite element model may 

be also a good predictive tool to determine the elastic properties of nanoclay reinforced 

polymers. 

3. DISCUSSION AND CONCLUSIONS 

In this paper (Part II) the Mori-Tanaka formulation and the Finite Element Method (FEM) were 

used to predict the elastic properties of nanoclay reinforced PP composites at various 

temperatures. The Mori-Tanaka formulation was modified to include particles of different 

thicknesses. Three different particle distributions, namely; a) oriented particles, b) 2-D randomly 

distributed particles and c) 3-D randomly distributed particles were compared to those obtained 

experimentally. As noted previously, the results in Figure 3. indicate that the Mori-Tanaka 

results match the experimental data reasonably well. It appears that the results for oriented 

particles provide the best match and the results for 2-D and 3-D randomly distributed particles 

are close to each other. The variation of mechanical properties with temperature, especially 

Young’s modulus can be very significant (Figure 2). For example experimental data for 3% 

nanoclay reinforcement specimens show that the Young’s modulus is reduced by 89% when the 

temperature increases from -65°F to 160°F ( Figure 2.c). The bulk of this decrease takes place 

around the glass transition temperature (Tg) of PP. For example, the Young’s modulus decreases 

by 61% when the temperature is raised from -4°F to RT. This change occurs because the matrix 

material PP changes from a glassy state to a rubbery state as it crosses Tg which is around 14°F. 

Similar trends are also observed for the other reinforcement percentages. We note that the Mori-

Tanaka calculations captured these trends accurately in all cases. Even though it was difficult to 

experimentally determine the Poisson’s ratios with precision, the Mori-Tanaka prediction 

provided satisfactory estimates (Figures 4 and 5). 
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The Mori-Tanaka formulations were also used to predict the elastic properties of epoxy based 

nanocomposites. The comparison of theoretical and experimental results for the Young’s 

modulus and the Poisson’sratio is shown in Figures 6 and 7. For epoxy based composites there 

was significant difference between the predicted and experimental results. We believe this may 

be due to agglomeration of nanoclay particles in epoxy because of its higher viscosity. 

The Mori-Tanaka formulations were modified to include the effects of voids and temperature. 

The results indicate that these effects become perceptible only at the highest reinforcement 

percentage and temperature (Figures 8-17 and Tables 10-11). Finally, a finite element (FE) 

model based on the representative volume concept was developed to predict the Young’s 

modulus and Poisson’s ratio of the composite. The results obtained from the finite element 

calculations were compared with the experimental data and the results obtained from the Mori-

Tanaka formulations for oriented particles (Figures 23-28). In general, the FE results match those 

obtained previously (experimental and Mori-Tanaka), except at 10% reinforcement. 

In light of these results, one may deduce the following conclusions: 

a. With a proper choice of geometric and material properties for the constituents, the Mori-

Tanaka formulation may be a good tool in predicting the Young’s modulus. The Mori-

Tanaka results, especially those obtained for oriented particles, matched well with the 

experiments, except at high temperatures and high reinforcement percentages 

b. Inclusion of voids in the Mori-Tanaka formulation gave a somewhat better match with 

experimental data at higher reinforcement percentages 
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c. The effect of temperature was included by using the secant instead of the tangent in 

calculating the Young’s modulus. As a consequence, better match with experiments was 

obtained at higher temperatures. 

d. The 3-D finite element model also provides a good estimate for the Young’s modulus of the 

nanocomposite. As the results displayed in the figures show, the finite element results 

compare well with those obtained experimentally. 
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